CLASS-PAIR-GUIDED MULTIPLE KERNEL LEARNING OF INTEGRATING HETEROGENEOUS FEATURES FOR CLASSIFICATION
نویسندگان
چکیده
منابع مشابه
Bilinear Formulated Multiple Kernel Learning for Multi-class Classification Problem
In this paper, we propose a method of multiple kernel learning (MKL) to inherently deal with multi-class classification problems. The performances of kernel-based classification methods depend on the employed kernel functions, and it is difficult to predefine the optimal kernel. In the framework of MKL, multiple types of kernel functions are linearly integrated with optimizing the weights for t...
متن کاملVisual saliency estimation by integrating features using multiple kernel learning
In the last few decades, significant achievements have been attained in predicting where humans look at images through different computational models. However, how to determine contributions of different visual features to overall saliency still remains an open problem. To overcome this issue, a recent class of models formulates saliency estimation as a supervised learning problem and according...
متن کاملMultiple Kernel Learning for Object Classification
Combining information from various image descriptors has become a standard technique for image classification tasks. Multiple kernel learning (MKL) approaches allow to determine the optimal combination of such similarity matrices and the optimal classifier simultaneously. Most MKL approaches employ an `-regularization on the mixing coefficients to promote sparse solutions; an assumption that is...
متن کاملLearning Deep Features for One-Class Classification
We propose a deep learning-based solution for the problem of feature learning in one-class classification. The proposed method operates on top of a Convolutional Neural Network (CNN) of choice and produces descriptive features while maintaining a low intra-class variance in the feature space for the given class. For this purpose two loss functions, compactness loss and descriptiveness loss are ...
متن کاملFlower Classification by Using Multiple Kernel Learning
Object classification for categories with a significant visual similarity is a difficult problem. Because natural objects are slightly different for each individual, it is difficult to classify them with one feature. Therefore multiple features are needed to classify them. As amethod of combiningmultiple features, MKL is focused recently. In this research, we employ color, shape, and texture fe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
سال: 2017
ISSN: 2194-9034
DOI: 10.5194/isprs-archives-xlii-3-w3-195-2017